Score: ___ / 100 Name: Key Midterm Exam Part I (Calculator Section)

Instructor:

MA1161 Spring 2006

Show sufficient work to justify all answers.

1. The temperature, T, of a hot object put in the refrigerator is given by

$$T = f(t) = 195 - \frac{3t}{50},$$

where t is the time in seconds since the object was put in to refrigerator.

(a) Find a formula for the inverse function $f^{-1}(T)$.

$$f^{-1}(T) = \frac{-50}{3}T + 3250$$

$$f^{-1}(T) = \frac{-\frac{50}{3}(T - 195)}{[3]}$$

(b) Evaluate and give the practical meaning $f^{-1}(32)$.

an object at a temperature of 32° has been in the oven 2710.7 sec (or 45.28 min)

$$f^{-1}(32) = \frac{2716.7 \text{ Sec}}{(45.28 \text{ min})} [3]$$

2. Give a formula for a rational function which has x-intercepts at x = 2 and x = -3 and a vertical asymptote at x = 1.

$$\frac{(\times - 1)}{(\times - 5)(\times + 3)}$$

$$y = \underbrace{\frac{(\times - 2)(\times + 3)}{(\times - 1)}} [4]$$

- 3. Suppose that after 5 years, 60% of a radioactive substance is left.
 - (a) Assuming the substance decays at a continuous rate, fill in the following table, where P is the percentage of the original amount left after t years.

t (years)	0	5	10	15
P (percent)	100	60	36	108/5=21.6

ratio:
$$60 = \frac{3}{5}$$
 $\frac{x}{60} = \frac{3}{5}$ $\frac{x}{36} = \frac{3}{5}$

(b) Find a possible formula for P(t).

$$P(t) = P_0 e^{kt}$$
 $P_0 = 100$ $P_0 = 100 e^{k5}$ $P_0 = 100 e^{k5}$

$$P(t) = \frac{|\bigotimes e^{\frac{(\ln \frac{2}{6})t}{5}}}{2} \approx |\bigotimes e^{-.1022t}[4]$$

(c) Use your formula to find the half-life of the substance.

$$\frac{1}{2} = e^{\frac{(2n\frac{3}{5})}{5}t} + (1)$$

$$\ln \frac{1}{2} = \ln \frac{3}{5}t$$

$$\frac{5 \ln \frac{1}{2}}{\ln \frac{3}{5}} = t$$

$$(2)$$

Half-Life =
$$\frac{5 \ln \frac{1}{2}}{\ln \ln \frac{3}{5}} \approx 6.78 \, \text{yrs} [4]$$

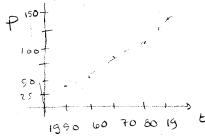
4. Find a possible formula for the graph of the sinusoidal function shown below:

$$y = \frac{2 + 3\cos(\pi x)}{y = 2 + 3\sin[\pi(x - 0.5)]}$$
 [4]

5. The table gives the population P = f(t), in millions, in some country in the year t.

	1950	1960	1970	1980	1990
P (Population in millions)	40	52.8	74.2	111.8	144.1

(a) Does f'(t) appear to be positive or negative during the years between 1950 and 1990? (Show work to support your answer)



slopes are positive

$$f'(t)$$
 is positive [3]

(b) Does f''(t) appear to be positive or negative during the years between 1950 and 1990? (Show work to support your answer)

rate of change 1950-1960:
$$\frac{52.8-40}{10} = 1.28$$

rate of change increasing

f''(t) is positive [3]

(c) Estimate f'(1975). (Include units)

- 6. At a time t seconds after it is thrown in the air, a tomato is at a height of $h(t) = -4.9t^2 + 25t + 3$ meters.
 - (a) What is the average velocity of the tomato during the first 2 seconds? (Include units)

$$\frac{h'(z)-h(0)}{z-0} = -4.9(4)+25(2)+3-[0+0+3] = \frac{30.4}{2}$$
(1)

Average Velocity =
$$1562 \text{ m/s}$$
 [4]

(b) Find the exact instantaneous velocity of the tomato at t=2 seconds. (Include units)

$$h'(t) = -9.86 + 25$$
 (2)
 $h'(2) = 5.4$

Instantaneous Velocity =
$$5.4 \text{ M/S}$$
 [4]

(c) What is the acceleration at t=2 seconds? (Include units)

$$h''(t) = -9.8$$
 (2)
 $h''(2) = -9.8$

Acceleration =
$$\frac{-9.8 \, \text{m/s}^2}{}$$
 [4]

7. Let $f(x) = x^2 + 3x + 2$. Find f'(1) algebraically using the limit definition of the derivative.

$$f'(x) = \lim_{h \to 0} f(x+h) - f(x)$$

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 + 3(1+h) + 2 - [1+3+2]}{h}$$

$$= \lim_{h \to 0} \frac{1 + 2h + h^2 + 3 + 3h + 2 - 6}{h}$$

$$= \lim_{h \to 0} \frac{5h + h^2}{h}$$

$$= \lim_{h \to 0} \frac{5 + h + h^2}{h}$$

- 8. An economist is interested in how the price of a certain commodity affects its sales. Suppose that at a price of p dollars, a quantity q of the commodity is sold.
 - (a) If q = f(p), explain in economic terms the meaning of the statements f(10) = 240,000 and f'(10) = -29000.

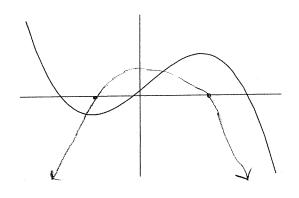
$$f(10) = 240,000 \text{ means}$$
 if the price is \$10 years sell 240,000 [4]

$$f'(10) = -29000$$
 means for every dollar over \$10 you charge [4]
the number of items sold will drop by 29,000

(b) Using this information, estimate f(12).

$$f(12) = 182,000$$
 [4]

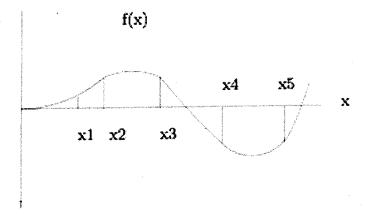
9. The graph of f(x) is shown below. Sketch a possible graph of f'(x) on the same set of axes.



1 pt each zero
1 pt +/- in correct
1 pt +/- intervals

[5]

10. At which of the marked x-values in the figure can the following statements be true?.



(a)
$$f(x) < 0$$

(b)
$$f'(x) < 0$$

(c)
$$f(x)$$
 is decreasing

(d)
$$f'(x)$$
 is decreasing

(e) Slope of
$$f(x)$$
 is positive

(f) Slope of
$$f(x)$$
 is increasing

(c)
$$\times_3 \times_4$$
 [2]

(e)
$$\frac{\chi_1, \chi_2, \chi_5}{}$$
 [2]

(f)
$$\times_{\Lambda_1} \times_{\Lambda_1} \times_{\Lambda_2}$$
 [2]

MA1161 Spring 2006

Score: ____ Name: ______ Midterm Exam Part II (Non-Calculator Section)

Show sufficient work to justify all answers.

1. (a) Find the derivative of $y = 4t^2 + \frac{13}{\sqrt{t}} - \frac{2}{t^2}$.

$$y = 4t^2 + 13t^{\frac{1}{2}} - 2t^{-2}$$

 $y' = 8t - \frac{13}{2}t^{-\frac{3}{2}} + 4t^{-3}$

(b) Find $\frac{dy}{dx}$ if $y = 2^x$.

$$\frac{d(2^{\times})}{dx} = \ln(2)2^{\times}$$

$$y' = 8t - \frac{13}{2t^{3/2}} + \frac{4}{t^3}$$
 [4] or
$$y' = 8t - \frac{13}{2}t^{-3/2} + 4t^{-3}$$

$$\frac{dy}{dx} = \left(\frac{\ln 2}{2} \right) \frac{x}{2}$$
 [4]

(c) If $g(x) = x^2 \cdot e^x$, find g'(x).

$$g'(x) = \left(\frac{d}{dx}x^{2}\right)e^{x} + x^{2}\left(\frac{d}{dx}e^{x}\right)$$

$$= 2xe^{x} + x^{2}e^{x}$$

$$g'(x) = \frac{(2x+x^2)e^x}{2xe^x+x^2e^x}$$
 [4]
or $g'(x) = 2xe^x+x^2e^x$

2. (a) If
$$f(x) = 2x^2 + x$$
, find $f'(2)$.

$$F'(2) = 4(2) + 1 = 9$$

$$f'(2) = \underline{\qquad \qquad} [4]$$

(b) Find the equation of the tangent line to f(x) at x = 2.

$$f(2) = Z(4) + 2 = 10$$
 so (Z10) is a point on the line

The equation of the tangent line is
$$(y-10) = 9(x-2)$$
 [4]